2,517 research outputs found

    Space station stabilization and control study Final engineering report

    Get PDF
    Simulation of stabilization and control for spinning, manned space station to provide artificial gravity station environmen

    Optimizing cyanobacterial product synthesis: Meeting the challenges.

    Full text link
    The synthesis of renewable bioproducts using photosynthetic microorganisms holds great promise. Sustainable industrial applications, however, are still scarce and the true limits of phototrophic production remain unknown. One of the limitations of further progress is our insufficient understanding of the quantitative changes in photoautotrophic metabolism that occur during growth in dynamic environments. We argue that a proper evaluation of the intra- and extracellular factors that limit phototrophic production requires the use of highly-controlled cultivation in photobioreactors, coupled to real-time analysis of production parameters and their evaluation by predictive computational models. In this addendum, we discuss the importance and challenges of systems biology approaches for the optimization of renewable biofuels production. As a case study, we present the utilization of a state-of-the-art experimental setup together with a stoichiometric computational model of cyanobacterial metabolism for quantitative evaluation of ethylene production by a recombinant cyanobacterium Synechocystis sp. PCC 6803

    Global communication part 1: the use of apparel CAD technology

    Get PDF
    Trends needed for improved communication systems, through the development of future computer-aided design technology (CAD) applications, is a theme that has received attention due to its perceived benefits in improving global supply chain efficiencies. This article discusses the developments of both 2D and 3D computer-aided design capabilities, found within global fashion supply chain relationships and environments. Major characteristics identified within the data suggest that CAD/CAM technology appears to be improving; however, evidence also suggest a plateau effect, which is accrediting forced profits towards information technology manufactures, and arguably compromising the industry's competitive advantage. Nevertheless, 2D CAD increases communication speed; whereas 3D human interaction technology is seen to be evolving slowly and questionably with limited success. The article discusses the findings and also presents the issues regarding human interaction; technology education; and individual communication enhancements using technology processes. These are still prevalent topics for the future developments of global strategy and cultural communication amalgamation

    Structural Kinetic Modeling of Metabolic Networks

    Full text link
    To develop and investigate detailed mathematical models of cellular metabolic processes is one of the primary challenges in systems biology. However, despite considerable advance in the topological analysis of metabolic networks, explicit kinetic modeling based on differential equations is still often severely hampered by inadequate knowledge of the enzyme-kinetic rate laws and their associated parameter values. Here we propose a method that aims to give a detailed and quantitative account of the dynamical capabilities of metabolic systems, without requiring any explicit information about the particular functional form of the rate equations. Our approach is based on constructing a local linear model at each point in parameter space, such that each element of the model is either directly experimentally accessible, or amenable to a straightforward biochemical interpretation. This ensemble of local linear models, encompassing all possible explicit kinetic models, then allows for a systematic statistical exploration of the comprehensive parameter space. The method is applied to two paradigmatic examples: The glycolytic pathway of yeast and a realistic-scale representation of the photosynthetic Calvin cycle.Comment: 14 pages, 8 figures (color

    Deciphering the physiological response of Escherichia coli under high ATP demand

    Get PDF
    One long‐standing question in microbiology is how microbes buffer perturbations in energy metabolism. In this study, we systematically analyzed the impact of different levels of ATP demand in Escherichia coli under various conditions (aerobic and anaerobic, with and without cell growth). One key finding is that, under all conditions tested, the glucose uptake increases with rising ATP demand, but only to a critical level beyond which it drops markedly, even below wild‐type levels. Focusing on anaerobic growth and using metabolomics and proteomics data in combination with a kinetic model, we show that this biphasic behavior is induced by the dual dependency of the phosphofructokinase on ATP (substrate) and ADP (allosteric activator). This mechanism buffers increased ATP demands by a higher glycolytic flux but, as shown herein, it collapses under very low ATP concentrations. Model analysis also revealed two major rate‐controlling steps in the glycolysis under high ATP demand, which could be confirmed experimentally. Our results provide new insights on fundamental mechanisms of bacterial energy metabolism and guide the rational engineering of highly productive cell factories

    Semi-quantitative stability analysis constrains saturation levels in metabolic networks

    Get PDF
    Recently structural kinetic modeling has been proposed as an intermediary approach between a full kinetic descrip- tion of metabolic networks and a static constrained-based analysis of them. It extends the null-space analysis by a local stability analysis yielding a parametrization of the Jacobian in terms of saturation levels of the involved re- actions with respect to their substrate metabolite concen- tration. These levels are normalized and stay within well- defined bounds for every reaction. We utilize results from robust control theory to determine subintervals of satu- ration levels that render the steady state asymptotically stable. In particular we apply Kharitonov's theorem and parametric Lyapunov functions in conjunction with inter- val computation. A glycolytic pathway model comprising 12 reactions is used to illustrate the method

    Estimating Mutual Information

    Get PDF
    We present two classes of improved estimators for mutual information M(X,Y)M(X,Y), from samples of random points distributed according to some joint probability density Ό(x,y)\mu(x,y). In contrast to conventional estimators based on binnings, they are based on entropy estimates from kk-nearest neighbour distances. This means that they are data efficient (with k=1k=1 we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to non-uniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of k/Nk/N for NN points. Numerically, we find that both families become {\it exact} for independent distributions, i.e. the estimator M^(X,Y)\hat M(X,Y) vanishes (up to statistical fluctuations) if Ό(x,y)=Ό(x)Ό(y)\mu(x,y) = \mu(x) \mu(y). This holds for all tested marginal distributions and for all dimensions of xx and yy. In addition, we give estimators for redundancies between more than 2 random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.Comment: 16 pages, including 18 figure

    Statistics of Partial Minima

    Full text link
    Motivated by multi-objective optimization, we study extrema of a set of N points independently distributed inside the d-dimensional hypercube. A point in this set is k-dominated by another point when at least k of its coordinates are larger, and is a k-minimum if it is not k-dominated by any other point. We obtain statistical properties of these partial minima using exact probabilistic methods and heuristic scaling techniques. The average number of partial minima, A, decays algebraically with the total number of points, A ~ N^{-(d-k)/k}, when 1<=k<d. Interestingly, there are k-1 distinct scaling laws characterizing the largest coordinates as the distribution P(y_j) of the jth largest coordinate, y_j, decays algebraically, P(y_j) ~ (y_j)^{-alpha_j-1}, with alpha_j=j(d-k)/(k-j) for 1<=j<=k-1. The average number of partial minima grows logarithmically, A ~ [1/(d-1)!](ln N)^{d-1}, when k=d. The full distribution of the number of minima is obtained in closed form in two-dimensions.Comment: 6 pages, 1 figur

    Mean-risk models using two risk measures: A multi-objective approach

    Get PDF
    This paper proposes a model for portfolio optimisation, in which distributions are characterised and compared on the basis of three statistics: the expected value, the variance and the CVaR at a specified confidence level. The problem is multi-objective and transformed into a single objective problem in which variance is minimised while constraints are imposed on the expected value and CVaR. In the case of discrete random variables, the problem is a quadratic program. The mean-variance (mean-CVaR) efficient solutions that are not dominated with respect to CVaR (variance) are particular efficient solutions of the proposed model. In addition, the model has efficient solutions that are discarded by both mean-variance and mean-CVaR models, although they may improve the return distribution. The model is tested on real data drawn from the FTSE 100 index. An analysis of the return distribution of the chosen portfolios is presented
    • 

    corecore